Analysis of radial breathing mode of vibration of single-walled carbon nanotubes via doublet mechanics
نویسندگان
چکیده
منابع مشابه
Coupled Axial-Radial Vibration of Single-Walled Carbon Nanotubes Via Doublet Mechanics
This paper investigates the coupled axial-radial (CAR) vibration of single-walled carbon nanotubes (SWCNTs) based on doublet mechanics (DM) with a scale parameter. Two coupled forth order partial differential equations that govern the CAR vibration of SWCNTs are derived. It is the first time that DM is used to model the CAR vibration of SWCNTs. To obtain the natural frequency and dynamic respon...
متن کاملRadial Breathing Mode Frequency of Multi-Walled Carbon Nanotube Via Multiple-Elastic Thin Shell Theory
In this paper, the radial breathing mode (RBM) frequencies of multi-walled carbon nanotubes (MWCNTs) are obtained based on the multiple-elastic thin shell model. For this purpose, MWCNT is considered as a multiple concentric elastic thin cylindrical shells, which are coupled through van der Waals (vdW) forces between two adjacent tubes. Lennard-Jones potential is used to calculate the vdW ...
متن کاملValidation of Shell Theory for Modeling the Radial Breathing Mode of a Single-Walled Carbon Nanotube (RESEARCH NOTE)
In this paper, the radial breathing mode (RBM) frequency of single-walled carbon nanotube (SWCNT) is studied based on the thin shell theory. For this purpose, SWCNT is considered as an elastic thin cylindrical shell. The dynamic equation of RBM is derived using the Hamilton’s principle. An analytical solution of the RBM frequency of SWCNT is obtained. The advantage of this formulation is that i...
متن کاملradial breathing mode frequency of multi-walled carbon nanotube via multiple-elastic thin shell theory
in this paper, the radial breathing mode (rbm) frequencies of multi-walled carbon nanotubes (mwcnts) are obtained based on the multiple-elastic thin shell model. for this purpose, mwcnt is considered as a multiple concentric elastic thin cylindrical shells, which are coupled through van der waals (vdw) forces between two adjacent tubes. lennard-jones potential is used to calculate the vdw forc...
متن کاملQuantum-coupled radial-breathing oscillations in double-walled carbon nanotubes.
Van der Waals-coupled materials, ranging from multilayers of graphene and MoS(2) to superlattices of nanoparticles, exhibit rich emerging behaviour owing to quantum coupling between individual nanoscale constituents. Double-walled carbon nanotubes provide a model system for studying such quantum coupling mediated by van der Waals interactions, because each constituent single-walled nanotube can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
سال: 2016
ISSN: 0044-2267
DOI: 10.1002/zamm.201500160